2 Sets, Functions, Sequences, and Sums

2.2 Set Operations

1. When we talk about subsets, we are concerned with subsets of a larger set, usually called <u>universal set</u> denoted by U.

We can use Venn Diagrams to represent a set:

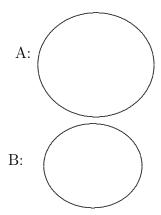


Figure 1: A Venn Diagram

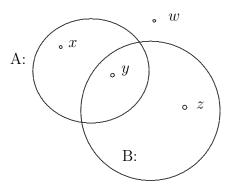
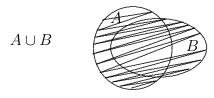
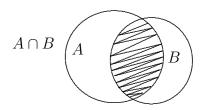


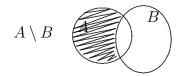
Figure 2: A Venn Diagram

From the digram: $x \in A, y \in B, z \in A, z \in B, w \notin A, w \notin B$.

- 2. Let A and B be two sets. The following are ways of combining two or more sets:
 - (a) The <u>intersection</u> of A and B: $A \cap B = \{x : x \in A \text{ and } x \in B\}$. If $A \cap B = \emptyset$, then A and B are disjoint.
 - (b) The <u>union</u> of A and B: $A \cup B = \{x : x \in A \text{ or } x \in B\}.$
 - (c) The <u>difference</u> of A and B: $A \setminus B = \{x : x \in A \text{ and } x \notin B\}.$
 - (d) The <u>complement</u> of A: $\bar{A} = \{x : x \notin A\} = U \setminus A$, where U is the universal set.
 - (e) The relative complement of B in A: $A \setminus B = \{x : x \in A \text{ and } x \notin B\}.$







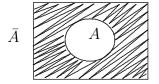


Figure 3: Set operations

Example: Let $A = \{1, 3, 5, 6, 7\}$, $B = \{1, 3, 8\}$, and the universal set $U = \{1, 2, ..., 10\}$. What are the intersection, union, difference...?

- (a) $A \cap B = \{1, 3\}.$
- (b) $A \cup B = \{1, 3, 5, 6, 7, 8\}.$
- (c) the difference $A \setminus B = \{5, 6, 7\}$, and $B \setminus A = \{8\}$
- (d) $\bar{A} = \{2, 4, 8, 9, 10\}$
- (e) the relative complement $A \setminus B = \{5, 6, 7\}$.
- 3. <u>set identities</u> -page 124 (note that they are similar to the "or" and "and" tables for predicates)
- 4. when proving inequalities, there are three choices of techniques:
 - "chasing the element" (see Example 10 page 125): In order to show that some set X is a subset of Y, we choose an arbitrary element $x \in X$, and we show that $x \in Y$ (where X and Y could be expressions involving some sets, so for Example 10, $X = \overline{A \cap B}$, and $Y = \overline{A} \cup \overline{B}$)
 - "logical equivalences" (see Example 11 page 125): Use the definition to show the inequality in question

- "membership table" (See Example 12 page 125): This is like a truth table: you consider all the choices of A, B, and C, where x could be an element of each or not.
- 5. Generalized Intersection and Unions: Indexed Collection of Sets Suppose that A_1, A_2, \ldots, A_n is a collection of collection of sets, $(n \geq 3)$. The following are ways of combining two or more sets:
 - (a) The <u>intersection</u> of the n sets A_1, A_2, \ldots, A_n is:

$$\bigcap_{i=1}^{n} A_i = \{x : x \in A_i, \forall i, 1 \le i \le n\}.$$

(b) The union of of the *n* sets A_1, A_2, \ldots, A_n is:

$$\bigcup_{i=1}^{n} A_{i} = \{x : x \in A_{i}, \exists i, 1 \le i \le n\}.$$

Example: Let $A_i = \{i, i+1\}, 1 \le i \le 10$. What are the intersection and the union of them.

(a)
$$\bigcap_{i=1}^{10} A_i = \emptyset.$$

(b)
$$\bigcup_{i=1}^{10} A_i = \{1, 2, \dots, 11\}.$$

Note: If we have different index sets, we have different results: Let $A_i = \{i, i+1\}$, and the index set $I = \{1, 5, 10\}$. Then

(a)
$$\bigcap_{i \in I} A_i = \emptyset$$
.

(b)
$$\bigcup_{i \in I} A_i = \{1, 2, 5, 6, 10, 11\}.$$